wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

If 0<α,β<π and cosα+cosβcos(α+β)=32, then

A
α=π3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
β=π3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
α=β
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
α+β=π3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct options are
A α=π3
B α=β
C β=π3

cos+cosβcos(α+β)=322cosα+β2cosαβ2(2cos2α+β21)=322cosα+β2cosαβ22cos2α+β2=3214cos2α+β24cosα+β2cosαβ2+1=04cos2α+β24cosα+β2cosαβ2+cos2αβ2+sin2αβ2=0(2cosα+β2cosαβ2)2+sin2αβ2=0
(2cosα+β2cosαβ2)2=0 or sin2αβ2=0
2cosα+β2cosαβ2=0 or sinαβ2=0
From sinαβ2=0αβ2=0αβ=0α=β ..(1)
And from
2cosα+β2cosαβ2=02cos(α2)cos(β2)2sin(α2)sin(β2)cos(α2)cos(β2)sin(α2)sin(β2)=0tan(α2)tan(β2)=13
U\sin g (1)
tan2(α2)=3tanα2=13α=π3=β


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon