If 0∘<θ<90∘, then √sec2θ+cosec2θ =
tan θ + cot θ
tan θ - cot θ
- tan θ + cot θ
- tan θ - cot θ
√sec2θ+cosec2θ =√(1+tan2θ)+(1+cot2θ) =√tan2θ+cot2θ+2 =√tan2θ+cot2θ+2tanθcotθ [∵tanθcotθ=1] =√(tanθ+cotθ)2 =tanθ+cotθ
If cos 3θ=√32; 0∘<θ<20∘ , then value of θ is:
If sin(2α + 45o) = cos(30o - α), where, 0o < α < 90o, then the value of α in degrees is.
If sin (A + B) = 1, cos (A – B) = 1 and 0∘<A+B≤90∘, find A and B.
If 3tanθ+cotθ=5cosec θ, then θ= __ (in degrees) [0∘<θ<90∘]