If 0≤x≤π2 and 81sin2x+81cos2x=30 then x is equal to
Let 81sin2x=y then 81cos2x=811−sin2x=81y
So, y2−30y+81=0 y = 3 or y = 27
⇒ 81sin2x=3or27 sin2x=14or34
sinx = ±12 or ±√32 (neglecting−12,√32as0≤x≤π2)
x=π6orπ3