The correct option is A 1
We know that,
tan−1(2x1−x2)=2tan−1x, if −1<x<1
and cos−1(1−x21+x2)=2tan−1x, if 0≤x<∞
Therefore, sin{tan−11−x22x+cos−11−x21+x2}
=sin{cot−12x1−x2+cos−11−x21+x2}
=sin{π2−tan−12x1−x2+cos−11−x21+x2}
=sin{π2−2tan−1x+2tan−1}, if 0≤x<1
=sinπ2=1