If 0≤x<2π, then the number of real values of x, which satisfy the equation cosx + cos2x + cos3x + cos4x = 0, is:
7
cosx+cos2x+cos3x+cos4x=02cos5x2.cos3x2+2cos5x2.cosx2=02cos5x2×2cosx×cosx2=0x=(2n+1)π5,(2k+1)π2,(2r+1)πWhere n,k,ϵ Z 0≤x<2πHence x=π5,3π5,π,2π5,9π5,π2,3π2