If 0≤x≤2π and |cosx|≤sinx, then
∣cosx∣≤sinx, 0≤x≤2π
If 0≤x≤π2⇒cosx≥0⇒∣cosx∣=cosx
⇒tanx≥1⇒xϵ[π4,π2]
If π2<x≤π⇒cosx≤0⇒∣cosx∣=−cosx
⇒tanx≤1⇒xϵ(π2,3π4]
considering both cases,
xϵ[π4,π2]∪(π2,3π4]
Hence option 'C' is correct.
second method ⇒ It is easy if you
solve it by graphical method.