A) sin2x−cosx=14⇒1−cos2x−cosx=14
⇒4cos2x+4cosx−3=0⇒(2cosx+3)(2cosx−1)=0
⇒cosx=12 or cosx=−32 (not possible)
⇒x=π3,5π3
Number of solution is 2
B) sin2x=cos3x⇒cos(π2−2x)=cos3x
⇒3x=2nπ±(π2−2x)
⇒x=2nπ−π2 or 5x=2nπ+π2
⇒x=π10,5π10,9π10,13π10,17π10,π2,3π2
So number of distinct solution is 6
C) tan2x+cot2x=2⇒tan4x−2tan2x+1=0⇒tan2x=1⇒tanx=±1⇒x=π4,3π4,5π4,7π4
Number of solution is 4
D) sinx=12,cosx=√32
⇒x=π6
Number of solution is 1