wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If 0<θ<π2and sin θ + cos ​θ +tan ​θ+cot ​θ +sec ​θ +cosec ​θ= 7, then show that sin 2​θ is a root of the equation x2-44x+36 =0

Open in App
Solution

Dear student

sinθ+cosθ+tanθ+cotθ+secθ+cosecθ=7sinθ+cosθ+sinθcosθ+cosθsinθ+1cosθ+1sinθ=7sin2θ cosθ+cos2θsinθ+sin2θ+cos2θ+sinθ+cosθsinθ cosθ=7sinθ cosθ(sinθ+cosθ)+1+sinθ+cosθ=7sinθ cosθLet sinθ cosθ=vand 12×2sinθ cosθ=v12sin2θ=vsin2θ=2v ...(A)and sinθ+cosθ=u u2=(sinθ+cosθ)2=sin2θ+cos2θ+2sinθ cosθ=1+2sinθ cosθ=1+2v ...(1)So, uv+1+u=7vu(v+1)=7v-1u=7v-1v+1u2=7v-1v+12(1+2v)=7v-1v+12 ..(2)Let sin2θ=x=2v [using A]Then,(2) becomes1+x=7x2-12x2+121+x=49x24+1-7xx24+1+x1+x=49x2+4-28xx2+4+4xx2+4x+4+x3+4x+4x2=49x2+4-28xx3-44x2+36x=0x2-44x+36=0So, sin2θ is a root of x2-44x+36=0
Regards

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon