If 0<p<q, then limn→∞qn+pn1n=?
e
p
q
0
Explanation for correct option:
Step-1: Simplify the given data.
Given, limn→∞qn+pn1n;0<p<q
=limn→∞qn1+pnqn1n;0<p<q
=limn→∞qn1n1+pqnqpn1npqn;0<p<q
Step-2: Apply formula: limx→∞(f(x))(gx)=elimx→∞(g(x))[f(x)-1]
=qelimn→∞1n1+pqn-1,0<p<q
=qe0,0<p<q ∵1∞=0
=q
Hence, correct answer is option C
If limn→∞rn=0, then r=?
For 0< ϕ < π2, if x=∑∞n=0cos2nϕ, y=∑∞n=0sin2nϕ, z=∑∞n=0cos2n ϕ, then