1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Principal Solution of Trigonometric Equation
If 0 < θ < ...
Question
If
0
<
θ
<
90
o
and
sec
θ
=
cosec
60
o
, find the value of
2
cos
2
θ
−
1
Open in App
Solution
0
<
θ
<
90
∘
s
e
c
θ
=
c
o
s
e
c
60
⇒
s
e
c
θ
=
1
s
i
n
60
=
2
√
3
⇒
1
c
o
s
θ
=
2
√
3
⇒
c
o
s
θ
=
√
3
2
⇒
θ
=
30
∘
2
c
o
s
2
θ
−
1
=
2
(
c
o
s
30
)
2
−
1
⇒
2
×
(
√
3
2
)
2
−
1
⇒
2
×
3
4
−
1
⇒
3
2
−
1
=
1
2
∴
2
c
o
s
2
θ
−
1
=
1
2
Suggest Corrections
0
Similar questions
Q.
Determine, for what value of
θ
(
0
o
≤
θ
≤
90
o
)
,
2
cos
2
θ
−
3
c
o
s
θ
+
1
=
0
Q.
If
tan
9
θ
=
cot
θ
, where
9
θ
<
90
o
then find the value of
θ
.
Q.
If
4
sin
2
θ
−
1
=
0
and
θ
is less than
90
o
, find the value of
θ
and the value of
cos
2
θ
+
tan
2
θ
.
Q.
If
5
cos
2
θ
+
2
cos
2
θ
2
=
−
1
,
when
(
0
<
θ
<
π
)
,
then the values of
θ
are
Q.
If θ is a positive acute such that sec θ = cosec 60°, find the value of 2 cos
2
θ − 1.