If 0<x<1, then 1+x2xcos(cot-1x)+sin(cot-1x)2-112=?
x1+x2
x
1+x2
Step 1. Find the value of 1+x2[xcos(cot-1x)+sin(cot-1x)2-1]12:
Let cot-1x=θ
⇒ cotθ=x
⇒ sinθ=11+x2=sin(cot-1x)
and
cosθ=x1+x2=cos(cot-1x)
Step 2. Put the values of sinθ and cosθ in given expression, we get
∴1+x2xcos(cot-1x)+sin(cot-1x)2-112
=1+x2x×x1+x2+11+x22–112=1+x21+x21+x22–112=1+x21+x2–112=x1+x2
Hence, Option ‘C’ is Correct.
The term independent of x in the expansion of x+1x23-x13+1-x-1x-x1210, x≠1, is equal to
Arrange 12,13,34, 56 in ascending order.
The value of m for which [{(172)-2}-13]14=7m is:
If y=cot-1(cos2x)12, then the value of dydx at x=π6will be
Evaluate the value of following:-
111+411+311+211