1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Basic Inverse Trigonometric Functions
If 0< x < 1...
Question
If
0
<
x
<
1
, then
tan
−
1
(
√
1
−
x
2
1
+
x
)
is equal to
A
1
2
cos
−
1
x
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
cos
−
1
√
1
+
x
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
sin
−
1
√
1
−
x
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
1
2
√
1
+
x
1
−
x
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
B
1
2
cos
−
1
x
tan
−
1
(
√
1
−
x
2
1
+
x
)
Let
x
=
cos
θ
=
tan
−
1
(
√
1
−
cos
2
θ
1
+
cos
θ
)
tan
−
1
sin
θ
1
+
cos
2
θ
2
−
sin
2
θ
2
=
tan
−
1
2
sin
θ
2
cos
θ
2
2
cos
2
θ
2
=
tan
−
1
(
tan
θ
2
)
=
θ
2
=
1
2
cos
−
1
x
Suggest Corrections
0
Similar questions
Q.
Inverse circular functions,Principal values of
s
i
n
−
1
x
,
c
o
s
−
1
x
,
t
a
n
−
1
x
.
t
a
n
−
1
x
+
t
a
n
−
1
y
=
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
<
1
π
+
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
>
1
.
If
0
<
x
<
1
, then
√
1
+
x
2
[
{
x
c
o
s
(
c
o
t
−
1
x
)
+
s
i
n
(
c
o
t
−
1
x
)
}
2
−
1
]
1
/
2
is equal to
(a)
x
√
1
+
x
2
(b)
x
(c)
x
√
1
+
x
2
(d)
√
1
+
x
2
Q.
Prove the following
(
1
)
sin
−
1
(
2
x
1
+
x
2
)
=
2
tan
−
1
x
,
|
x
|
≤
1
(
2
)
cos
−
1
(
1
−
x
2
1
+
x
2
)
=
2
tan
−
1
x
,
x
≥
0
(
3
)
tan
−
1
(
2
x
1
−
x
2
)
=
2
tan
−
1
x
,
−
1
<
x
<
1
Q.
Inverse circular functions,Principal values of
s
i
n
−
1
x
,
c
o
s
−
1
x
,
t
a
n
−
1
x
.
t
a
n
−
1
x
+
t
a
n
−
1
y
=
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
<
1
π
+
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
>
1
.
(a)
3
s
i
n
−
1
2
x
1
+
x
2
−
4
c
o
s
−
1
1
−
x
2
1
+
x
2
+
2
t
a
n
−
1
2
x
1
−
x
2
=
π
3
(b)
s
i
n
[
(
1
/
5
)
c
o
s
−
1
x
]
=
1
(c)
t
a
n
−
1
√
x
2
+
x
+
s
i
n
−
1
√
x
2
+
x
+
1
=
π
2
Q.
Solve
is equal to
(A)
(
B)
(
C)
(
D)