If 0<x<π and cosx+sinx=12, then tanx is equal to
4–73
-4–73
1+73
1-73
Step 1. Find the value of tanx:
Given, cosx+sinx=12
Squaring on both sides,
cos2x+sin2x+2sinxcosx=14
⇒ 1+sin2x=14 ∵sin2θ+cos2θ=1;sin2θ=2sinθcosθ
⇒ sin2x=14–1
⇒ 2tanx(1+tan2x)=-34 ∵sin2θ=2tanθ1-tan2θ
⇒ 8tanx=-3–3tan2x
⇒ 3tan2x+8tanx+3=0
Step 2. By using quadratic formula, we get
tanx=-8±(64–36)2(3)=-8±286=-8±276=-4±73
-4–73 is not possible as 0<x<π
∴tanx=-(4-7)3
Hence, Option ‘B’ is Correct.