wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If 0<x<π and cosx+sinx=12 then prove that tanx=(4+73).

Open in App
Solution

cosx+sinx=12....(1)provetanx=(4+73)Squaringbothsideofeq(1)(cosx+sinx)2=(12)2[2sinθcosθ=sin2θandsin2θ+cos2θ=1](sin2x+cos2x)+2sinx.cosx=141+sin2x=14sin2x=141=342tanx1+tan2x=3432tanx=(1+tan2x)3tanx=2+2tan2x2tan2x+3tanx+2=0D=94×2×2=7[factorbydiscriminentmethod]thenRoots=3±72×2tanx=(3+7)4or(73)4

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Factorisation and Rationalisation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon