cosx+sinx=12....(1)provetanx=−(4+√73)Squaringbothsideofeq(1)⇒(cosx+sinx)2=(12)2[∵2sinθ⋅cosθ=sin2θandsin2θ+cos2θ=1]⇒(sin2x+cos2x)+2sinx.cosx=14⇒1+sin2x=14⇒sin2x=14−1=−34⇒2tanx1+tan2x=−34⇒−32tanx=(1+tan2x)⇒−3tanx=2+2tan2x⇒2tan2x+3tanx+2=0D=9−4×2×2=−7[factorbydiscriminentmethod]thenRoots=−3±√−72×2∴tanx=−(3+√−7)4or(√−7−3)4