If 0<x,y<π and cosx+cosy-cosx+y=32, then sinx+cosy is equal to:
1+32
1-32
32
12
Explanation for correct option:
Step-1: Simplify the given data.
Given,cosx+cosy-cosx+y=32,............i
We know that cos(c)+cos(d)=2cos(c+d2)cos(c-d2)&cos(x)=2cos2(x2)-1
⇒2cosx+y2cosx-y2-2cos2x+y2-1=32,
⇒ 2cosx+y2cosx-y2-2cos2x+y2=32-1,
⇒ 2cosx+y2cosx-y2-2cos2x+y2=12,
⇒ 4cosx+y2cosx-y2-4cos2x+y2-1=0,
Let, cosx+y2=t,
⇒ 4t2-4tcosx-y2-1=0,
Step-2: Use discriminant D=b2-4ac≥0.
⇒ -4cosx-y22-4×4×1≥0,
⇒ cos2x-y2-1≥0,
⇒ cos2x-y2≥1,
⇒ cos2x-y2=1, ∵cos(x)=[0,1]
⇒ x-y2=0
⇒ x=y.......ii
Step-3: Put the value x=y in equation ii.
⇒ cosx+cosx-cos2x=32
⇒ 2cosx-2cos2x-1=32
⇒ 4cosx-4cos2x-1=0
⇒ 4cos2x-4cosx+1=0
⇒2cosx2-2×2×cosx+12=0
⇒ 2cosx-12=0
⇒ cosx=12
⇒ x=60°
Step-4: Finding value of sinx+cosy.
=sin60°+cos60°=32+12=3+12
Hence, correct answer is option (A).
Let A and B denote the statements
A :cosα+cosβ+cosγ=0,
B : sinα+sinβ+sinγ=0
If cos(β-γ)+cos(γ-α)+cos(α-β)=-32 then