The correct option is
D (2−√2,2−√2)Given midpoints of the triangle are
(0,1),(1,1),(1,0).
From the figure we can say that xa=xb=0,xc=2 and ya=yc=0,yb=2.
Let the length of the opposite sides having coordinates (xa,ya),(xb,yb),(xc,yc) be a,b,c respectively.
Then a=√(xb−xc)2+(yb−yc)2=√22+22=√4+4=√8=2√2,
b=√(xa−xc)2+(ya−yc)2=√22+02=√4+0=√4=2,
c=√(xb−xa)2+(yb−ya)2=√02+22=√0+4=√4=2.
That is, a=2√2,b=2,c=2
We know that the coordinates of the incentre is given by (axa+bxb+cxca+b+c,aya+byb+cyca+b+c)
=(2⋅22√2+2+2,2⋅22√2+2+2)
=(42√2+4,42√2+4)
=(22+√2,22+√2)
=(2(2−√2)(2+√2)(2−√2),2(2−√2)(2+√2)(2−√2))
=(4−2√24−2,4−2√24−2)
=(4−2√22,4−2√22)
=(2−√2,2−√2)
Thus the coordinates of the incentre are (2−√2,2−√2)