If and are direction ratios of two lines, then the direction cosines of a perpendicular to both the lines are
Explanation for correct option:
Step-1: Finding the vector which is perpendicular on two given lines.
Given, direction ratio of the lines are and .
We know that a Vector which is perpendicular to the lines which have direction ratio are is
Vector Which is perpendicular to the lines whose direction ratio are and .is
Step-2: Finding direction cosine.
We know that the direction cosine of a vector is
Therefore required direction ratio is
Hence, correct answer is option