Since base is given 10 ,.
log10250=log10(10×25)=log1010+log1025=1+log25 [Using (log1010=1)]
∴2log10x+1=1+log1025
i.e. 2log10x=log1025
But 2log10x=log10x2
∴log10x2=log1052
∴x2=25
∴x=5
Given 2 log10 x+1=log10 250, find :
(i) x
(ii) log10 2x