If (12−t1)+(22−t2)+.........+(n2−tn)=13(n2−1), then tn is where tn is the last term
12+22+32+....n2−(t1+t2+....+tn)=(13)(n2−1)(n(n+1)(2n+1)6)−(13)(n2−1)=∑tn(n+13)[(n(2n+1)2)−(n−1)]=∑tn(n+13)(n(2n+1−2(n−1))2)=∑tn(n+13)(2n2+n−2n+22)=∑tn(n+13)(2n2−n+22)=∑tn∴sn=((n+1)(2n2−n+2)6)tn=sn−sn−1=((n+1)(2n2−n+2)6)−(n[2(n−1)2−(n−1)+2]6)=(16)[(n+1)(2n2−n+2)]−n(2n2−4n+2−n+1+2)=(16)[2n3−n2+2n+2n2−n+2−2n3+5n2−5n](16)(6n2−4n+2)=(3n2−2n+13)