The correct option is A 36
Given series is
1+6+11+16+.....+x=148
Here, a=1,d=6−1=11−6=16−11=5 and Sn=148
∵Sn=n2[2a+(n−1)d]
∴148=n2[2×1+(n−1)5]
⇒296=2n+5n2−5n
⇒296=5n2−3n
⇒5n2−3n−296=0
⇒(n−8)(5n+37)=0
⇒n=8,n=−375
∴n=8
(∵n cannot be negative)
Now, Tn=a+(n−1)d
x=1+(8−1)×5
⇒x=1+35⇒x=36.