Given n, nth roots of unity are
1,α1,α2,α3,.....,αn−1
Let x=(1)1/n
⇒xn−1=0
⇒xn−1=(x−1)(x−α1)(x−α2)(x−α3).....(x−αn−1)
⇒xn−1x−1=(x−α1)(x−α2)(x−α3)....(x−αn−1)
Taking limx→1 on both sides, we have
limx→1xn−1x−1=limx→1(x−α1)(x−α2)(x−α3).....(x−αn−1)
⇒n=(1−α1)(1−α2)(1−α3)....(1−αn−1)