If 1,α1,α2,α3,............,αn−1 are the roots of the equation x = (1)1n. Find the sum of the roots.
x = (1)1n = (cosθ+isinθ)1n
[cos(2kπ+0)+isin(2kπ+0)]1n
αk =cos2kπn + isin2kπn
where k = 0,1,2,3,...............(n-1)
So,nth roots of the unit are ak (k=0,1,2,3,.........(n-1))
sum of the roots
1 + α1 + α2 + α3,............,αn−1
= 1(1−an−1)(1−a) = 1−[cos2π+isin2π](1−a) {Whenk=nan=cos2π+isin2π}
= 1−11−α = 0
Alternative
Since xn - 1 = 0
Sum of the root of the equation = -coefficient of xn−1coefficient of xn
= −01 = 0.