wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If 1,α1,α2,α3 and α4 be the roots of x51=0, then ωα1ω2α1.ωα2ω2α2.ωα3ω2α3.ωα4ω2α4=

A
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
ω
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
ω2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C ω
Since 1,α1,α2,α3,a4 are the roots of the equation x51=0.
(x51)=(x1)(xα1)(xα2)(xα3)(xα4)
x51x1=(xα1)(xα2)(xα3)(xα4) ...(1)
Putting x=ω in (1), we get
ω51ω1=(ωα1)(ωα2)(ωα3)(ωα4)
ω1ω21=(ωα1)(ωα2)(ωα3)(ωα4) ...(2)
and putting x=ω2 in (1), we get
ω101ω1=(ω2α1)(ω2α2)(ω2α3)(ω2α4)
ω1ω21=(ω2α1)(ω2α2)(ω2α3)(ω2α4) ...(3)
Dividing (2) by (3), we get
ωα1ω2α1.ωα2ω2α2.ωα3ω2α3.ωα4ω2α4=(ω21)2(ω1)2
=ω4+12ω2ω4+12ω=ω+12ω2ω2+12ω
=ω22ω2ω2ω=3ω23ω=ω

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Types of Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon