If -1,α,α3,α5,¯¯¯¯α,¯¯¯¯¯¯α3,¯¯¯¯¯¯α5 are roots of the equation z7 + 1 = 0.Find the value of α¯¯¯¯α,α3¯¯¯¯¯¯α3,α5¯¯¯¯¯¯α5,α¯¯¯¯α + α3¯¯¯¯¯¯α3 + α5¯¯¯¯¯¯α5.
z7 = -1
z = (−1)17c
= (cosπ+isinπ)17
= cos(π+2kπ7)+isin(π+2kπ7)-----------------(1)
Where k = 0,1,2,3,4,5,6
α.¯¯¯¯α = |a|2 = 1 {From equation 1 we see that modulus of each root is 1}
α3.¯¯¯¯¯¯α3 = |a3|2 = 1
α5.¯¯¯¯¯¯α5 = |a5|2 = 1
α¯¯¯¯α + α3¯¯¯¯¯¯α3 + α5¯¯¯¯¯¯α5.= 1 + 1 + 1 =3