If -1,α,α3,α5,¯¯¯¯α,¯¯¯¯¯¯α3,¯¯¯¯¯¯α5 are the roots of the equation z7 + 1 = 0. Find the value of cosπ7 × cos3π7 × cos5π7.
-
Roots of the equation z7 + 1 = 0 are -1,α,α3,α5,¯¯¯¯α,¯¯¯¯¯¯α3,¯¯¯¯¯¯α5
z7 = -1
z = (−1)17
= (cosπ+isinπ)17
= cosπ+2kπ7+isinπ+2kπ7-----------------(1)
Where k = 0,1,2,3,4,5,6
So, α = cosπ7 + isinπ7, ¯¯¯¯α = cosπ7 - isinπ7,α3 = cos3π7 + isin3π7,¯¯¯¯¯¯α3 = cos3π7 - isin3π7,α5 = cos5π7 + isin5π7,¯¯¯¯¯¯α5 = cos5π7 - isin5π7.
Given equation can be written as
(z7+1) = (z + 1) (z - α) (z−(¯¯¯¯α)) (z−α3) (z−(¯¯¯¯¯¯α3)) (z−α5) (z−(¯¯¯¯¯¯α5))
z7+1z+1 = (z - α ) (z−(¯¯¯¯α)) (z−α3) (z−(¯¯¯¯¯¯α3)) (z−α5) (z−(¯¯¯¯¯¯α5))
Multiply first with second term,third with fourth term, fifth with sixth term of RHS α & ¯¯¯¯α are conjugate each other
When we add two conjugate numbers, we will get 2 × real part of conjugate number.
z6 - z5 +z4 - z3 + z2 - 2 + 1 = [z2 + 1 - 2(α−(¯¯¯¯α))] + [z2 + 1 - 2(α3−(¯¯¯¯¯¯α3))]
[z2 + 1 - 2(a5−(¯¯¯¯¯a5))] --------------------(1)
Divide, by z3 on both sides, we get,
(z3 + 1z3) - (z2 + 1z2) + (z+1z) - 1 = (z+1z−2cosπ7) (z+1z−2cos3π7) (z+1z−2cos5π7)--------------(1)
Let's assume z+1z = 2x--------(2)
(z+1z)2 = z2 + 1z2 + 2(z×1z)
z2 + 1z2 = (2x)2 - 2 = 4x2 - 2 ------------(3)
(z+1z)3 = z3 + 1z3 + 3(z+1z)
z3 + 1z3 = (2x)3 - 3 × (2x) = 8x3 - 6x-----------(4)
Substitute the value of (z+1z), z2 + 1z2 and z3 + 1z3 in equation (1)
We get,
(8x3−6x)−(4x2−2)+(2x)−1=(2x−2cosπ7) (2x−2cos3π7) (2x−2cos5π7)
8x3 - 4x2 - 4x + 1 =8 (x−2cosπ7) (x−2cos3π7) (x−2cos5π7)
So, 8x3 - 4x2 - 4x + 1 = 0 has roots cosπ7.cos3π7.cos5π7
Product of the roots of above given equation = cosπ7.cos3π7.cos5π7 = -constant termCoefficient of x3 = - 18