If (1+ax+bx2)4=a0+a1x+a2x2+…+a8x8; a, b, a0, a1…a8ϵR and are such that a0+a1+a2≠0 and ∣∣ ∣∣a0a1a2a1a2a0a2a0a1∣∣ ∣∣=0, then
a=14, b=532
Put x=0 in (1+ax+bx2)4=a0+a1x+a2x2+…+a8x8 …(1)
∴a0=1
Differentiate equation (1) and substitute x=0, we get a1=4a.
Differentiating again and substituting x=0, we get a2=6a2+4b
Now ∣∣ ∣∣a0a1a2a1a2a0a2a0a1∣∣ ∣∣=0
⇒a30+a31+a32–3a0a1a2=0
⇒(a0+a1+a2)((a0−a1)2+(a1−a2)2+(a2−a0)2)=0
But a0+a1+a2≠0⇒a0=a1=a2=1
∴1=4a, 6a2+4b=1
∴a=14,b=532