The correct option is C √2
1+cot2θ=cosec2θ=(√3+2√2−1)2;
On comparing, cosecθ=√3+2√2−1
√3+2√2 can be written as
√1+2+2√2=√(1)2+(√2)2+2×1×√2
On comparing with (a2+b2+2ab)=(a+b)2
We can write as,
√(1+√2)2=1+√2
So, cosec θ=1+√2−1
cosec θ=√2= cosec 45∘
θ=45∘
1tanθ+sinθ1+cosθ=1tan45∘+sin45∘1+cos45∘
=11+1√21+1√2
=1+11+√2
On simplifying we get, √2