If 1+1+22+1+2+33+....to n terms is S. Then, S is equal to
n(n+3)4
Let Tn be the nth term of the given series Thus, we have: Tn=1+2+3+4+5+....+nn=n(n+1)2n=n2+12 Now, let Sn be the sum of n terms of the given series Thus, we have: Sn=∑nk=1(k2+12)⇒Sn=∑nk=1k2+12⇒Sn=n(n+1)4+n2⇒Sn=n2(n+32)⇒Sn=n(n+3)4