If (1+i)(1+2i)(1+3i)....(1ni)=a+ib, then 2×5×10×....×(1+n2) is equal to
a2+b2
a2+b2(1+i)(a+2i)(1+3i)...(1+ni)=a+ib
Taking modulus on both the sides, we get :
|(1+i)(1+2i)(1+3i)....(1+ni)|=|a+ib||(1+i)(1+2i)(1+3i)....(1+ni)|can be written as|(1+i)||1+2i||(1+3i)|...|(1+ni)|√12+12×√12+22×√12+32×.....×√1+n2=√a2+b2⇒ √2×√5×√10×....×√1+n2=√a2+b2
Squaring on both sides, we get :
2×5×10×....×(1+n2)=a2+b2