If (1+i)(1-i)m=1, then least integral value of m is
Finding the least integral value of m :
Given that [(1+i)(1-i)]m=1
Multiply numerator and denominator with (1+i)
ā[(1+i)(1+i)(1-i)(1+i)]m=1
ā [(1+i)2(1+1)]m=1
ā [(1+2i-1)2]m=1
ā (2i2)m=1
ā im=1m=4
Hence. the value of m is 4.
If [1+i1−i]m=1, then find the least positive integral value of m.
If (1+i1−i)m = 1 then the least integral value of m is