If [(1-i)(1+i)]100=a+ib, then values of a,b
Finding the values of a,b:
Given that (1-i)(1+i)100=a+ib,
(1-i)(1+i)=(1-i)(1-i)(1+i)(1-i)
=(1-2i-1)(1+1)=-2i2=-i
(1-i)(1+i)100=-i100
=(i4)25=1
Comparing with a+ib,a=1,b=0
Hence, the values are a=1,b=0
If (1−i1+i)100=a+ib, find (a, b).