If (1+i)(2+i)(3+i)⋯⋯(100+i)=a+ib, then the value of 2⋅5⋅10⋯⋯10001 is
A
√a2+b2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
a2+b2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
√a2−b2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
a2−b2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Ba2+b2 Given: (1+i)(2+i)(3+i)⋯⋯(100+i)=a+ib
Applying modulus on both the sides, we get |(1+i)(2+i)(3+i)⋯⋯(100+i)|=|a+ib|⇒|(1+i)||(2+i)||(3+i)|⋯⋯|(100+i)|=|a+ib|⇒√12+12√22+12⋯⋯√1002+12=√a2+b2⇒2⋅5⋅10⋯⋯10001=a2+b2