If 1+i1-i3-1-i1+i3=x+iy, then
x=0,y=-2
x=-2,y=0
x=1,y=1
x=-1,y=1
Explanation for the correct option:
STEP 1: Simplify [1+i1-i]3-[1-i1+i]3.
given 1+i1-i3-1-i1+i3=x+iy
1+i1-i3-1-i1+i3=1+i1+i1-i1+i3-1-i1-i1+i1-i3=1-1+2i1+13-1-1-2i1+13=2i23--2i23=-i3-i3=-2i
STEP 3: Equate value of [1+i1-i]3-[1-i1+i]3 obtained in step 1 and step 2 to find values of x,y.
1+i1-i3-1-i1+i3=x+iy=0-2i
Comparing real and imaginary parts,
x=0y=-2
Hence, option (A) is correct.