If (1+i)i = A+iB. Find the value of loge(A+iB)
A+iB = (1+i)i
Taking loge on both sides
loge (A+iB) = loge(1+i)i
= iloge(1+i)
= iloge(√2(cosπ4+isinπ4))
= iloge(√2eiπ4)
= i[loge√2+logeeiπ4]=iloge√2+i2π4=iloge√2−π4
= i2loge2−π4
If sin(loge ii) = A+iB where i = √−1.Find the value of cos(loge ii).
If √a+ib== x + iy, then possible value of √a−ib is