If (1 + i)(z + ¯¯¯z) - i(a + i)(z - ¯¯¯z) + 2(a - 1)i = 0 and z¯¯¯z = 5 then the value of 'a' is
Put z = x + iy then z + ¯¯¯z = 2x and z - ¯¯¯z = 2iy
(1 + i)(z + ¯¯¯z) - i(a + i)(z - ¯¯¯z) + 2(a - 1)i = 0
After simplification of equation (i), we get
x = -a, y = 1
Using in (ii) ⇒ a2 + 1 = 5 ⇒ a = ±2