If 1+log5(x2+1)≥log5(ax2+4x+a) for all x∈R, then a can be equal to
We have, log55(x2+1)≥log5(ax2+4x+a)
⇒5(x2+1)≥ax2+4x+a, ∀ x∈R
⇒x2(5−a)−4x+(5−a)≥0, ∀ x∈R
5−a>0
⇒a<5 ⋯(1)
and D≤0
⇒16−4(5−a)2≤0
⇒(2−(5−a))(2+5−a)≤0
⇒(a−3)(a−7)≥0
⇒a∈(−∞,3]∪[7,∞) ⋯(2)
(1)∩(2), we get
a∈(−∞,3] ⋯(3)
But for the domain of log5(ax2+4x+a),
we must have ax2+4x+a>0, ∀ x∈R
⇒a>0 and 16−4a2<0
⇒a>0 and a∈(−∞,−2)∪(2,∞)
⇒a∈(2,∞) ⋯(4)
Thus, from both (3)∩(4), we get
a∈(2,3]