If 1log3π+1log4π>x, then x will be
3
2
4
None of these
STEP 1: Using the property of log function that logba=logalogb.
⇒log3π=logπlog3⇒log4π=logπlog4
STEP 2: Substituting values of log3π,log4π obtained in step 1 in 1log3π+1log4π and simplify.
⇒1log3π+1log4π=log3logπ+log4logπ=log3+log4logπ=log12logπ=logπ12
STEP 3: Simplify 1log3π+1log4π>x using the value obtained in step 2.
⇒1log3π+1log4π>x⇒logπ12>x⇒12>πx
Since 12>π2⇒x=2.
Hence, option (B) is correct.
If f=x1+x2+13(x1+x2)3+15(x1+x2)5+... to ∞ and g=x−23x3+15x5+17x7−29x9+..., then f=d×g. Find 4d.