wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If 1,ω,ω2 are cube roots of unity, prove that 1,ω,ω2 are vertices of an equilateral triangle.

Open in App
Solution

Let z1,z2,z3 be the 3 vertices.

z1=eiθ1,z2=eiθ2,z3=eiθ3

z1+z2+z3=0eiθ1+eiθ2+eiθ3=01+ei(θ2θ1)+ei(θ3θ1)=0

ei(θ2θ1)+ei(θ3θ1)=1

Using Euler's formula, we get,

sin(θ2θ1)+sin(θ3θ1)=0 and

cos(θ2θ1)+cos(θ3θ1)=1

Let (θ2θ1)=x,(θ3θ1)=y

sinx+siny=0sinx=siny=sin(y)x={2kπy,2kπ+π+y

cosx+cosy=12cosy=1y=2kπ±2π3,x=2kp2π3

So, θ2,θ1,andθ3,θ1 differ 2π3

triangle being equivalent.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon