Let z1,z2,z3 be the 3 vertices.
z1=eiθ1,z2=eiθ2,z3=eiθ3
∴z1+z2+z3=0⇒eiθ1+eiθ2+eiθ3=0⇒1+ei(θ2−θ1)+ei(θ3−θ1)=0
⇒ei(θ2−θ1)+ei(θ3−θ1)=−1
Using Euler's formula, we get,
sin(θ2−θ1)+sin(θ3−θ1)=0 and
cos(θ2−θ1)+cos(θ3−θ1)=−1
Let (θ2−θ1)=x,(θ3−θ1)=y
⇒sinx+siny=0⇒sinx=−siny=sin(−y)⇔x={2kπ−y,2kπ+π+y
cosx+cosy=−1⇒2cosy=−1⇔y=2kπ±2π3,x=2kp∓2π3
So, θ2,θ1,andθ3,θ1 differ 2π3
⇒ triangle being equivalent.