If 1,ω,ω2 are the cube roots of unity, then (x+y+z)(x+yω+zω2)(x+yω2+zω) equal to
x3+y3+z3−3xyz
(x+y+z)(x+y+zω2)(x+yω2+zω)Using 1+ω+ω2=0=(x+y+z)(x+y(−1−ω2)+zω2)(x+y(−1−ω)+zω)=(x+y+z)[(x−y)−ω2(y−z)][(x−y)−ω(y−z)]=(x+y+z)[(x−y)2+(y−z)2+(x−y)(y−z)][using ω3=1]=(x+y+z)[x2+y2−2xy+y2+z2−2yz+xy−xz−y2+yz]=(x+y+z)[x2+y2+z2−xy−yz−xz]=x3+y3+z3–3xyz