If ,(1+i)x−2i3+i+(2−3i)y+i3−i=ithen (x,y) equal
(3,1)
(3,-1)
(-3,1)
(-3,-1)
Step 1: Simplify the given equation
(1+i)x−2i3+i+(2−3i)y+i3−i=i
⇒ [(1+i)x−2i](3−i)(3+i)(3−i)+[(2−3i)y+i](3+i)(3−i)(3+i)=i
⇒ (x+xi−2i)(3−i)+[2y+(1−3y)i](3+i)9+1=i
⇒ (x+xi−2i)(3−i)+[2y+(1−3y)i](3+i)=10i
⇒(3x+3xi−6i−xi+x−2)+(6y+3i−9yi+2yi−1+3y)=10i
⇒ (4x+9y−3)+i(2x−7y−13)=0
Comparing real and imaginary part
4x+9y−3=0 …..(1)
2x−7y−13=0 ..…(2)
Multiply equation(2) by 2
4x−14y−26=0 …..(3)
Step 2: Subtract equation(3) from equation(1)
23y+23=0
⇒23(y+1)=0
⇒ y+1=0
⇒ y=−1
Put y=−1 in equation (2)
2x−7(−1)−13=0
⇒ 2x+7−13=0
⇒ 2x−6=0
⇒ 2x=6
⇒ x=3
∴The value of (x,y) is (3,-1).
Hence, option ‘B’ is correct option.
Find the real values of x and y, if
(i) (x+i y)(2−3i)=4+i(ii) (3x−2i y)(2+i)2=10(1+i)(iii) (1+i)x−2i3+i+(2−3i)y+i3−i=i(iv) (1+i)(x+i y)=2−5i
Solve the following quadratic equations :
(i)x2−(3√2+2i)x+6√2i=0
(ii)x2−(5−i)x+(18+i)=0
(iii)(2+i)x2−(5−i)x+2(1−i)=0
(iv)x2−(2+i)x−(1−7i)=0
(v)ix2−4x−4i=0
(vi)x2+4ix−4=0
(vii)2x2+√15ix−i=0
(viii)x2−x+(1+i)=0
(ix)ix2−x+12i=0
(x)x2−(3√2−2i)x−√2i=0
(xi)x2−(√2+i)x+√2i=0
(xii)2x2−(3+7i)x+(9i−3)=0