If −1+−3=reιθ, then θ is equal
π3
-π3
2π3
-2π3
To find the value of θ:
Step 1: Calculate the value of r:
The given equation is −1+−3=reιθ
−1+−3=reιθ−1+-3=r(cosθ+ιsinθ)-1+3ι=r(cosθ+ιsinθ)rcosθ=−1rsinθ=3Squaring and addingr2(cos2θ+sin2θ)=1+3r2=4(∵cos2θ+sin2θ=1)r=2
Step 2: Calculate the value of θ
cosθ=−12sinθ=32θliesinsecondquadrantθ=π−π3=2π3
Hence option C: 2π3 is the correct option.