Given, 1+sin2 θ=3 sin θ.cos θ
On dividing by sin2 θ on both sides, we get;
1sin2 θ+1=3.cot θ [∵cot θ=cos θsin θ]
⇒cosec2 θ+1=3.cot θ [cosec θ=1sin θ]
⇒1+cot2 θ+1=3.cot θ ∵cosec2 θ−cot2 θ=1
⇒cot2 θ−3 cot θ+2=0
⇒cot2 θ−2 cot θ−cot θ+2=0 [by splitting the middle term]
⇒cot θ(cot θ−2)−1(cot θ−2)=0
⇒(cot θ−2)(cot θ−1)=0⇒cot θ=1 or 2
⇒tan θ=1 or 12 [∵tan θ=1cot θ]