If 1+sin2θ=3sinθcosθ then the solution set in [0,π2] is
1+sin2θ=3sinθcosθ
Divided by cos2θ
sec2θ+sin2θcos2θ=3tanθ
1+tan2θ+tan2θ=3tanθ
2tan2θ−3tanθ+1=0
2tan2θ−2tanθ−tanθ+1=0
2tanθ(tanθ−1)−(tanθ+1)=0
(tanθ−1)(2tanθ−1)=0
tanθ=1,2tanθ=1
θ=π4,θ=tan−112
{π4,tan−1(12)}