sin23x+sin4x=0
⇒(sin2x)(3−4sin2x)2+sin4x=0
⇒sin2x(9−24sin2x+16sin4x+sin2x)=0
⇒sin2x(9−23sin2x+16sin4x)=0
The second factor is a quadratic in sin2x
and has imaginary roots.
Hence,
sinx=0
Hence, x=−2π,−π,0,π,2π
Hence, smallest value of x is −2π