If 1+sinx+sin2x+...∞=4+23 , 0<x<π and x≠π2, then x is equal to
π3,5π6
2π3,π6
π3,2π3
π6,π3
Explanation for the correct option:
To find the value of x:
The given equation is 1+sinx+sin2x+...∞=4+23, 0<x<π and x≠π2,
1+sinx+sin2x+...∞ is geometric progression with first term, a=1 and common ratio, r=sinx .
1+sinx+sin2x+...∞=11−sinx4+23=11−sinx1−sinx=14+231−sinx=4−23(4+23)(4−23)=4−2316−12=4−234=1−32sinx=1−1+32sinx=32x=π3,2π3
Hence option (c):π3,2π3 is the correct option.