1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XI
Mathematics
Purely Imaginary
If -1+√-3=r...
Question
If
−
1
+
√
−
3
=
r
e
i
θ
, then
θ
is equal to :
A
2
π
3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
−
2
π
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
π
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
−
π
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
A
2
π
3
Given:
−
1
+
√
−
3
=
r
e
i
θ
Let
z
=
−
1
+
√
−
3
⇒
z
=
−
1
+
i
√
3
..........
(
1
)
Let polar form be
z
=
r
(
cos
θ
+
i
sin
θ
)
..........
(
2
)
From
(
1
)
and
(
2
)
−
1
+
i
√
3
=
r
cos
θ
+
i
r
sin
θ
Comparing real part and imaginary parts,we get
r
cos
θ
=
−
1
,
r
sin
θ
=
√
3
Squaring,we get
⇒
r
2
cos
2
θ
=
1
,
r
2
sin
2
θ
=
3
⇒
r
2
cos
2
θ
=
1
.........
(
3
)
and
r
2
sin
2
θ
=
3
.........
(
4
)
Adding
(
3
)
and
(
4
)
we get
r
2
cos
2
θ
+
r
2
sin
2
θ
=
1
+
3
⇒
r
2
(
cos
2
θ
+
sin
2
θ
)
=
4
⇒
r
2
=
4
since
(
cos
2
θ
+
sin
2
θ
=
1
)
⇒
r
=
2
Again,
r
cos
θ
=
−
1
,
r
sin
θ
=
√
3
⇒
2
cos
θ
=
−
1
,
2
sin
θ
=
√
3
since
r
=
2
⇒
cos
θ
=
−
1
2
,
sin
θ
=
√
3
2
Solutions of
cos
θ
=
−
1
2
are
{
π
−
π
3
,
π
+
π
3
}
Solutions of
sin
θ
=
√
3
2
are
{
π
−
π
3
,
π
3
}
⇒
θ
=
{
π
−
π
3
,
π
+
π
3
}
∩
{
π
−
π
3
,
π
3
}
⇒
θ
=
{
2
π
3
,
4
π
3
}
∩
{
2
π
3
,
π
3
}
∴
θ
=
2
π
3
Suggest Corrections
0
Similar questions
Q.
If -1+
√
−
3
=r
e
i
θ
, then
θ
is equal to