If −1+√−3 = reθ , then θ is equal to
Here −1+√−3=reθ⇒ −1+i√3=reθ =rcosθ+irsinθ Equating real and imaginary parts,we get rcosθ=−1 and rsinθ=√3 Hence, tanθ=−√3⇒ tanθ=tan2π3, Hence θ=2π3.
If -1+√−3=reiθ, then θ is equal to