If (1−x)(1+x+x2+x3+x4) is 3132 and x is a rational number. Find the value of 1+x+x2+x3+x4+x5.
Given (1−x)(1+x+x2+x3+x4)=3132......(i)
Since, 1+x+x2+x3+x4=1−x51−x......(ii)
Substitute equation (ii) in eqaution (i), we get
∴(1−x)(1−x51−x)=3132 or x5=1−3132=132
or x=15√32=12
∴1+x+x2+x3+x4+x5=1−x61−x=1−1261−12=1−16412
=2×6364=6332.
OR
(1−x)(1+x+x2+x3+x4)=3132
⇒1+x+x2+x3+x4−x−x2−x3−x4−x5=3132
⇒1−x5=3132
⇒x5=1−3132
⇒x5=132=125
∴x=12
Thus,
1+x+x2+x3+x4+x5=1+12+(12)2+(12)3+(12)4+(12)5
=1+12+14+18+116+132
=6332