The correct option is
A 210We have given that
(1+x)10=a0+a1x+a2x2+.....+a10x10
Put x=i
(1+i)10=(a0−a2+a4−a6+a8−a10)+i(a1−a3+a5−a7+a9)−−−−(1)
Put x=−i
(1−i)10=(a0−a2+a4−a6+a8−a10)+i(a1−a3+a5−a7+a9)−−−−(2)
Now on adding (1)+(2) we get
(a0−a2+a4−a6+a8−a10)=(1+i)10+(1−i)10
=(√2eiπ4)10+(√2e−iπ4)10
=25ei5π4+25e−5π4
=25(cosπ2+isin5π2)+25[cos(−5π2)+isin(−5π2)]
=25(0+i)+25(0−i)=0
a0−a2+a4−a6−a10=−a8
so, (a0−a2+a4−a6−a10)2=(a8)2
Now by subtracting (1)−(2) we get
2i(a1−a3+a5−a7+a9)=25(0+i)−25(0−i)
=25i+25i=26i
⇒a1−a3+a5−a7+a9=25
⇒(a1−a3+a5−a7+a9)2=210
So,
(a0−a2+a4−a6+a8−a10)2+(a1−a3+a5−a7+a9)2=a28+210
=452+210
Hence, the option (A) is the correct answers.