(1+x)15=C0+C1x+C2x2+....C15x15
∴(1+x)15x=C0x+C1+C2x+C3x2....C15x14
Differentiate both sides w.r.t. x
x⋅15(1+x)14−1⋅(1+x)15x2
=−C0x2+C2+2C3x+3C4x2....14C15x13
Putting x = 1 on both sides
15.214−215=−C0+C2+2C3+3C4....14C15
214(15−2)+1=C2+2C3+3C4....14C15
The given series = 214 .13 + 1 = 219923.